Characterizations of Restricted Pairs of Planar Graphs Allowing Simultaneous Embedding with Fixed Edges

نویسندگان

  • J. Joseph Fowler
  • Michael Jünger
  • Stephen G. Kobourov
  • Michael Schulz
چکیده

A set of planar graphs share a simultaneous embedding if they can be drawn on the same vertex set V in the Euclidean plane without crossings between edges of the same graph. Fixed edges are common edges between graphs that share the same simple curve in the simultaneous drawing. Determining in polynomial time which pairs of graphs share a simultaneous embedding with fixed edges (SEFE) has been open. We give a necessary and sufficient condition for whether a SEFE exists for pairs of graphs whose union is homeomorphic to K5 or K3,3. This allows us to characterize the class of planar graphs that always have a SEFE with any other planar graph. We also characterize the class of biconnected outerplanar graphs that always have a SEFE with any other outerplanar graph. In both cases, we provide efficient algorithms to compute a SEFE. Finally, we provide a linear-time decision algorithm for deciding whether a pair of biconnected outerplanar graphs has a SEFE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing Simultaneous Embedding with Fixed Edges

Abstract A set of planar graphs share a simultaneous embedding if they can be drawn on the same vertex set V of n vertices in the plane without crossings between edges of the same graph. Fixed edges are common edges between graphs that share the same Jordan curve in the simultaneous drawing. We give a necessary condition for when pairs of graphs can have a simultaneous embedding with fixed edge...

متن کامل

A note on simultaneous embedding of planar graphs

Let G1 and G2 be a pair of planar graphs such that V (G1) = V (G2) = V . A simultaneous embedding [6] Ψ = (Γ1,Γ2) of G1 and G2 is a pair of crossing-free drawings Γ1 and Γ2 of G1 and G2, respectively, such that for every vertex v ∈ V we have Γ1(v) = Γ2(v). If every edge e ∈ E(G1) ∩ E(G2) is represented with the same simple open Jordan curve both in Γ1 and in Γ2 we say that Ψ is a simultaneous e...

متن کامل

Simultaneous Graph Embeddings with Fixed Edges

We study the problem of simultaneously embedding several graphs on the same vertex set in such a way that edges common to two or more graphs are represented by the same curve. This problem is known as simultaneously embedding graphs with fixed edges. We show that this problem is closely related to the weak realizability problem: Can a graph be drawn such that all edge crossings occur in a given...

متن کامل

Intersection Graphs in Simultaneous Embedding with Fixed Edges

We examine the simultaneous embedding with fixed edges problem for two planar graphs G1 and G2 with the focus on their intersection S = G1∩G2. In particular, we will present the complete set of intersection graphs S that guarantee a simultaneous embedding with fixed edges for (G1, G2). More formally, we define the subset ISEFE of all planar graphs as follows: A graph S lies in ISEFE if every pa...

متن کامل

Simultaneous Embedding of Planar Graphs with Few Bends

We consider several variations of the simultaneous embedding problem for planar graphs. We begin with a simple proof that not all pairs of planar graphs have simultaneous geometric embedding. However, using bends, pairs of planar graphs can be simultaneously embedded on the O(n) × O(n) grid, with at most three bends per edge, where n is the number of vertices. The O(n) time algorithm guarantees...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008